XII. TOLERANSI LINIER, SUDUT, DAN GEOMETR

1. Pengertian Toleransi Bagian
Toleransi adalah 2 (dua) batas ukuran (batas atas dan batas bawah) yang diijinkan, jika dilakukan pengukuran terhadap benda kerja.

Gb. Definisi istilah mengenai toleransi.

Gb. Bagan diagram daerah toleransi.

2. Standar Toleransi Internasional
Telah ditentukan oleh ISO/ R286 (sistem ISO untuk limit dan suaiian). Toleransi standar ini disebut “Toleransi Internasional” atau “IT”.

Kualitas Toleransi :
Adalah sekelompok toleransi yang dianggap mempunyai ketelitian yang setara untuk semua ukuran dasar. Di dalam toleransi standar terdapat 18 kualitas toleransi yaitu IT 01, IT 0, dan IT 1 s/d IT 16.

- IT 01 s/d IT 4 untuk pekerjaan yang sangat teliti, seperti alat ukur, instrumen optik.
- IT 5 s/d IT 11 untuk permesinan umum dan bagian-bagian mampu tukar biasa.
- IT 12 s/d IT 16 untuk pekerjaan kasar.
3. Suai

Adalah perbedaan ukuran yang dijinkan untuk suatu pemakaian tertentu dari pasangan 2 (dua) benda yang memiliki ukuran berbeda sebelum dirakit.

Jenis-jenis suaian:

a. Suaiian longgar (clearance fit).

b. Suaiian pas (transition fit).

c. Suaiian paksa (interference fit).

2 (dua) sistem suaiian terhadap garis nol yaitu sistem satuan lubang (sistem lubang dasar) dan sistem satuan poros (sistem poros dasar). Sistem lubang dasar lebih umum digunakan.

Gb. Sistem satuan poros dan sistem satuan lubang.

Gb. Masing-masing kedudukan dari macam-macam daerah toleransi untuk suatu diameter poros/lubang tertentu.

Contoh penggunaan:

45g7 berarti: Diameter poros 45 mm, suaian longgar dalam sistem lubang dasar, dengan nilai toleransi dari tingkat IT 7.
45H8/g7 atau 45H8-g7
berarti: Diameter nominal (lubang maupun poros) 45 mm, suaien
longgar sistem lubang dasar dengan toleransi IT 8 untuk
lubang dan IT 7 untuk poros.

5. Penulisan Toleransi Linier dan Sudut
   a. Toleransi suaien dengan lambang ISO

   \[
   \begin{align*}
   & \text{Gb. Toleransi suaien dinyatakan} \\
   & \text{dengan lambang ISO.} \\
   & \text{Gb. Toleransi suaien dinyatakan oleh lambang} \\
   & \text{dan nilai penyimpangan.}
   \end{align*}
   \]

   b. Toleransi dengan angka

   \[
   \begin{align*}
   & \text{Gb. Toleransi dinyatakan oleh nilai} \\
   & \text{penyimpangan.} \\
   & \text{Gb. Toleransi dinyatakan oleh nilai} \\
   & \text{penyimpangan.}
   \end{align*}
   \]

   c. Toleransi simetris

   \[
   \begin{align*}
   & \text{Gb. Toleransi simetris.}
   \end{align*}
   \]
d. Ukuran-ukuran batas

Gb. Batas-batas ukuran.

e. Ukuran-ukuran batas dalam satu arah

Gb. Batas ukuran dalam satu arah.

f. Urutan penulisan penyimpangan

Gb. Urutan penulisan.

   a. Ketirusan dan pendakian

Perbandingan antara perbedaan diameter dari 2 (dua) potongan terhadap jaraknya disebut "ketirusan", yaitu:

\[ C = \frac{d - D}{L} = 2 \tan \frac{\alpha}{2} \]

Gb. Tirus.
Perbandingan antara perbedaan tinggi tegak lurus terhadap garis dasar, untuk suatu jarak tertentu disebut "pendakian" yaitu:

\[
\frac{H - h}{L} = \tan \beta
\]

b. Ukuran dan Toleransi Kerucut

Cara I.

Toleransi cara ini membatasi jarak penembusan dari pasangan bidang kerucut, dan masing-masing permukaan harus berada dalam 2 (dua) batas profil ketirusan yang sama, yang sesuai dengan kondisi bahan maksimum dan minimum. Toleransi yang ditentukan harus diperlhat oleh semua penampang untuk seluruh panjangnya.

Gb. Sistem dasar ketirusan (I).

Gb. Sistem dasar ketirusan (II).
Gb. Sistem dasar ketirusan (II).

Cara II.
Nilai toleransi cara ini dari ukuran hanya berlaku untuk penampang yang ukurannya tertera pada gambar dan tidak untuk tiap penampang seperti halnya pada cara kerucut dasar.
Permuakaan kerucut boleh terletak di mana saja antara posisi ekstrim, akibat toleransi yang terkumpul dari toleransi linear dan toleransi ketirusan, asalkan toleransi pada ketirusannya diperhatikan. Daerah toleransi ketirusan ini tidak menentukan kesalahan kelurus an yang diijinkan.

Gb. Sistem toleransi ketirusan (I).
Gb. Sistim toleransi ketirusan (II).

Gb. Sistim toleransi ketirusan (III).

c. Penerapannya
Dalam menyajikan ukuran sepasang kerucut yang bekerja sama, maka hal-hal berikut harus diperhatikan:
1). Ketirusan nominal yang sama.
2). Sebuah ukuran dalam kotak untuk diameter atau untuk posisi yang berhubungan dengan bidang ukur yang sama untuk kedua bagian yang dirakit.
3). Tidak diperkenankan mencantumkan toleransi diameter dari kedua ujung dan panjang kerucut, karena akan terjadi pengumpulan toleransi.

Gb. Ukuran dua buah kerucut yang berpasangan (I).

Gb. Ukuran dua buah kerucut yang berpasangan (II).

Gb. Contoh yang jelek dari ukuran kerucut.